G.G.27: Quadrilateral Proofs: Write a proof arguing from a given hypothesis to a given conclusion

1 Given that *ABCD* is a parallelogram, a student wrote the proof below to show that a pair of its opposite angles are congruent.

What is the reason justifying that $\angle B \cong \angle D$?

- 1) Opposite angles in a quadrilateral are congruent.
- 2) Parallel lines have congruent corresponding angles.
- 3) Corresponding parts of congruent triangles are congruent.
- 4) Alternate interior angles in congruent triangles are congruent.
- 2 The accompanying diagram shows quadrilateral *BRON*, with diagonals \overline{NR} and \overline{BO} , which bisect each other at *X*.

Prove: $\Delta BNX \cong \Delta ORX$

3 Given: *PROE* is a rhombus, \overline{SEO} , \overline{PEV} , $\angle SPR \cong \angle VOR$

4 Given: parallelogram *FLSH*, diagonal \overline{FGAS} , $\overline{LG} \perp \overline{FS}$, $\overline{HA} \perp \overline{FS}$

Prove: $\Delta LGS \cong \Delta HAF$

5 Given: parallelogram *ABCD*, diagonal \overline{AC} , and \overline{ABE}

Prove: $m \angle 1 > m \angle 2$

6 In the diagram below of quadrilateral ABCD, $\overline{AD} \cong \overline{BC}$ and $\angle DAE \cong \angle BCE$. Line segments AC, DB, and FG intersect at E. Prove: $\triangle AEF \cong \triangle CEG$

- 7 Given: Quadrilateral *ABCD* with $\overline{AB} \cong \overline{CD}$, $\overline{AD} \cong \overline{BC}$, and diagonal \overline{BD} is drawn. Prove: $\angle BDC \cong \angle ABD$
- 8 Prove that the diagonals of a parallelogram bisect each other.
- 9 A tricolored flag is made out of a rectangular piece of cloth whose corners are labeled *A*, *B*, *C*, and *D*. The colored regions are separated by two line segments, \overline{BM} and \overline{CM} , that meet at point *M*, the midpoint of side \overline{AD} . Prove that the two line segments that separate the regions will always be equal in length, regardless of the size of the flag.
- 10 The diagram below shows rectangle *ABCD* with points *E* and *F* on side \overline{AB} . Segments *CE* and *DF* intersect at *G*, and $\angle ADG \cong \angle BCG$. Prove: $\overline{AE} \cong \overline{BF}$

11 Given: Quadrilateral *ABCD*, diagonal \overline{AFEC} , $\overline{AE} \cong \overline{FC}$, $\overline{BF} \perp \overline{AC}$, $\overline{DE} \perp \overline{AC}$, $\angle 1 \cong \angle 2$ Prove: *ABCD* is a parallelogram.

12 Given: JKLM is a parallelogram. $\overline{JM} \cong \overline{LN}$ $\angle LMN \cong \angle LNM$ Prove: JKLM is a rhombus.

- 1 ANS: 3 REF: 081208ge
- 2 ANS:

Because diagonals \overline{NR} and \overline{BO} bisect each other, $\overline{NX} \cong \overline{RX}$ and $\overline{BX} \cong \overline{OX}$. $\angle BXN$ and $\angle OXR$ are congruent vertical angles. Therefore $\Delta BNX \cong \Delta ORX$ by SAS. REF: 080731b

3 ANS:

Because *PROE* is a rhombus, $\overline{PE} \cong \overline{OE}$. $\angle SEP \cong \angle VEO$ are congruent vertical angles. $\angle EPR \cong \angle EOR$ because opposite angles of a rhombus are congruent. $\angle SPE \cong \angle VOE$ because of the Angle Subtraction Theorem. $\Delta SEP \cong \Delta VEO$ because of ASA. $\overline{SE} \cong \overline{EV}$ because of CPCTC.

4 ANS:

Because *FLSH* is a parallelogram, $\overline{FH} \cong \overline{SL}$. Because *FLSH* is a parallelogram, $\overline{FH} \parallel \overline{SL}$ and since \overline{FGAS} is a transversal, $\angle AFH$ and $\angle LSG$ are alternate interior angles and congruent. Therefore $\Delta LGS \cong \Delta HAF$ by AAS.

REF: 010634b

5 ANS:

Because *ABCD* is a parallelogram, $\overline{AD} \parallel \overline{CB}$ and since \overline{ABE} is a transversal, $\angle BAD$ and $\angle 1$ are corresponding angles and congruent. If $m \angle BAD > m \angle 2$, then $m \angle 1 > m \angle 2$, using substitution. REF: 060533b

6 ANS:

Quadrilateral *ABCD*, $\overline{AD} \cong \overline{BC}$ and $\angle DAE \cong \angle BCE$ are given. $\overline{AD} \parallel \overline{BC}$ because if two lines are cut by a transversal so that a pair of alternate interior angles are congruent, the lines are parallel. *ABCD* is a parallelogram because if one pair of opposite sides of a quadrilateral are both congruent and parallel, the quadrilateral is a parallelogram. $\overline{AE} \cong \overline{CE}$ because the diagonals of a parallelogram bisect each other. $\angle FEA \cong \angle GEC$ as vertical angles. $\triangle AEF \cong \triangle CEG$ by ASA. REF: 011238ge

7 ANS:

REF: 061035ge

8 ANS:

Assume parallelogram *JMAP* with diagonals intersecting at *O*. Opposite sides of a parallelogram are congruent, so $\overline{JM} \cong \overline{AP}$. $\angle JOM$ and $\angle AOP$ are congruent vertical angles. Because *JMAP* is a parallelogram, $\overline{JM} \parallel \overline{AP}$ and since \overline{JOA} is a transversal, $\angle MJO$ and $\angle PAO$ are alternate interior angles and congruent. Therefore $\Delta MJO \cong \Delta PAO$ by AAS. Corresponding parts of congruent triangles are congruent. Therefore $\overline{JO} \cong \overline{AO}$ and $\overline{MO} \cong \overline{PO}$ and the diagonals of a parallelogram bisect each other. REF: 010233b

9 ANS:

 $\overline{AB} \cong \overline{CD}$, because opposite sides of a rectangle are congruent. $\overline{AM} \cong \overline{DM}$, because of the definition of midpoint. $\angle A$ and $\angle D$ are right angles because a rectangle has four right angles. $\angle A \cong \angle D$, because all right angles are congruent. $\Delta ABM \cong \Delta DCM$, because of SAS. $\overline{BM} \cong \overline{CM}$ because of CPCTC. REF: 080834b

10 ANS:

Rectangle <u>ABCD</u> with points <u>E</u> and <u>F</u> on side <u>AB</u>, segments <u>CE</u> and <u>DF</u> intersect at <u>G</u>, and $\angle ADG \cong \angle BCE$ are given. <u>AD</u> $\cong \overline{BC}$ because opposite sides of a rectangle are congruent. $\angle A$ and $\angle B$ are right angles and congruent because all angles of a rectangle are right and congruent. $\triangle ADF \cong \triangle BCE$ by ASA. $\overline{AF} \cong \overline{BE}$ per CPCTC. $\overline{EF} \cong \overline{FE}$ under the Reflexive Property. $\overline{AF} - \overline{EF} \cong \overline{BE} - \overline{FE}$ using the Subtraction Property of Segments. $\overline{AE} \cong \overline{BF}$ because of the Definition of Segments. REF: 011338ge

11 ANS:

 $\overrightarrow{FE} \cong \overrightarrow{FE} \text{ (Reflexive Property); } \overrightarrow{AE} - \overrightarrow{FE} \cong \overrightarrow{FC} - \overrightarrow{EF} \text{ (Line Segment Subtraction Theorem); } \overrightarrow{AF} \cong \overrightarrow{CE} \text{ (Substitution); } \angle BFA \cong \angle DEC \text{ (All right angles are congruent); } \Delta BFA \cong \Delta DEC \text{ (AAS); } \overrightarrow{AB} \cong \overrightarrow{CD} \text{ and } \overrightarrow{BF} \cong \overrightarrow{DE} \text{ (CPCTC); } \angle BFC \cong \angle DEA \text{ (All right angles are congruent); } \Delta BFC \cong \Delta DEA \text{ (SAS); } \overrightarrow{AD} \cong \overrightarrow{CB} \text{ (CPCTC); } ABCD \text{ is a parallelogram (opposite sides of quadrilateral ABCD are congruent) REF: } 080938ge$

12 ANS: $JK \cong LM$ because opposite sides of a parallelogram are congruent. $LM \cong LN$ because of the Isosceles Triangle Theorem. $\overline{LM} \cong \overline{JM}$ because of the transitive property. *JKLM* is a rhombus because all sides are congruent. REF: 011036ge