Complex Plane

Algebra 2

1. Calculate the distance between the complex numbers graphed below. Round to the nearest hundredth if necessary.

- 1.9.89 units
- 3.13.01 units
- 2. 10.63 units
- 4.15.00 units
- 2. Find the distance between the numbers $\mathbf{4} 9\mathbf{i}$ and $-7 + 5\mathbf{i}$ in the complex plane. Round to the nearest hundredth if necessary.
- 1.17.80 units
- 3.7.48 units
- 2. 11.89 units
- 4.5.39 units
- 3. Find the midpoint of the segment in the complex plane that has endpoints 12 9i and -10 + 3i.
- 1.1 3i
- 3.11 6i
- 2.2 6i
- 4.6 3i
- 4. What is the absolute value of the vector resulting from the sum of the complex numbers 7 + i and 4i?
 - 1. $2\sqrt{37}$
 - 2. √24
 - √74
 - 4. $2\sqrt{6}$

5. What is the magnitude of the vector of the complex number graphed below?

- 1. $2\sqrt{3}$ 2. $2\sqrt{5}$ 3. $\sqrt{10}$ 4. 20

6. What is the magnitude of the vector of the complex number graphed below?

- 1. 1 2. 5 3. $2\sqrt{6}$ 4. $\sqrt{26}$

7. Find the modulus of the complex number represented by point *C* in the diagram below.

- 1. $\sqrt{56}$
- √86
- 3. $\sqrt{106}$
- **4**. √196

8. The midpoint of a segment in the complex plane is 13 + 9i. If one endpoint of the segment is -7i, what is the other endpoint written as a complex number?

- 1.13 + 2i 3.13 + 25i
- 2.26 + 32i 4.26 + 25i

9. Find the modulus of the complex number represented by point *A* in the diagram below.

- 1. $\sqrt{20}$
- 2. $\sqrt{40}$
- 3. $\sqrt{52}$
- **4**. √62

10. What is the absolute value of the vector resulting from the sum of the complex numbers -2 + 2i and -3 - 14i?

- √119
- 2. 13*i*
- 3. -13
- 4. 13

11. Find the modulus of the complex number 5 + 3i.

- 1. √24
- √34
- √38
- 4. $\sqrt{42}$

12. What is the absolute value of the vector resulting from graphing the complex number -4 + i?

- 1. $3i\sqrt{2}$
- 2. √-15
- 3. √17
- 4. 17

13. Find the midpoint of the segment in the complex plane that has endpoints -14 + 11i and 6 + 3i.

$$1.7 - 4i$$
 $3.-4 + 7i$

$$2.-8+14i$$
 $4.-10+4i$

14. What is the midpoint of the segment in the complex plane that has endpoints -3 - 8i and 21 - 2i?

- 1. 18 6i
- 2. -24 6i
- 3. 9 3i
- 4. 9-5i

15.

What is the magnitude of the vector resulting from graphing the complex number -2i?

- 1. 2*i*
- 2. 2
- 3. $\sqrt{-4}$
- 4. 4

16. The midpoint of a segment in the complex plane is -3 + 8i. If one endpoint of the segment is 11 + 2i, what is the other endpoint written as a complex number?

$$1.4 + 5i$$
 $3.-17 + 14i$

$$2.-28 + 12i$$
 $4.5 - 8i$

17. Find the modulus of the complex number represented by point *B* in the diagram below.

- √65
 √75
- **4**. √121
- 18. Find the distance between the numbers 13 8i and 10i in the complex plane. Round to the nearest hundredth if necessary.
- 1.11.18 units 3.19.00 units
- 2. 12.45 units 4.22.20 units

19. Find the distance between the complex numbers graphed below. Round to the nearest hundredth if necessary.

- 1.3.00 units 3.6.71 units
- 2. 5.37 units 4. 7.28 units

20. What is the absolute value of the vector resulting from graphing the complex number 2 + 8i?

- 1. 68
- 2√17
- 3. $4\sqrt{17}$
- 4. 4